메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영미 (서울대학교) 손현석 (서울대학교)
저널정보
서울대학교 보건환경연구소 보건학논집 보건학논집 제49권 제2호
발행연도
2012.8
수록면
71 - 77 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Off-label use is the novel utilization of drugs for indications other than what the clinical trial set out to prove; these new indications are often discovered in post-marketing clinical trials or as side effects. Proving the new use, however, warrants large investments in terms of effort, time, and capital. Moreover, limitation on clinical trials proves to be a hindrance in proving the efficacy at all. Because it is time consuming and capital-intensive to invent a new drug to treat certain conditions, pharmaceutical companies usually necessitate a suitable drug candidate based on its characteristics instead of testing completely new structures. It would greatly save resources and increase the success rate significantly for the pharmaceutical companies to systematically apply predicted indications obtained using bioinformatics to the primary selection process. This approach using bioinformatics can also be applied to off-label drugs when clinical trials cannot be carried out to serve as one of the supports for unlabeled use. New indications are currently actively being predicted in bioinformatics for the above reasons; the extent and the methods used for the predictions were observed. The research done through computerized algorithms that use existing database of biomedical information on these off-label uses as found on PubMed are studied and evaluated in terms of its methods and extent.

목차

Abstract
Introduction
Discussion
References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-517-000927690