메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김현철 (울산과학대학교) 박형길 (삼성중공업)
저널정보
한국해양공학회 한국해양공학회지 한국해양공학회지 제29권 제2호
발행연도
2015.4
수록면
111 - 119 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In the initial ship design stage, performance predictions are generally carried out before and after the hull form design. The former is based on the main dimensions and power information, and the latter is based on the geometry of the hull form and propeller. This paper deals with the practical application of neural networks for the prediction of a ship`s performance factors before and after the hull form design. For this, the hull form parameters that affect the performance are studied, and an optimal neural network structure based on the SSMB database is constructed. By comparing the results predicted by neural networks and the model test results, we confirmed that neural networks can be applied to practically evaluate the performance in the initial ship design stage.

목차

ABSTRACT
1. 서론
2. 신경망의 구성 및 학습 방법
3. 설계 입출력 변수와 신경망의 최적 구조 결정
4. 결과 및 분석
5. 결론
References

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-559-001448374