메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jonghoon Kim (Chosun University) Chang-Yoon Chun (Seoul National University) B. H. Cho (Seoul National University)
저널정보
전력전자학회 ICPE(ISPE)논문집 ICPE 2015-ECCE Asia
발행연도
2015.6
수록면
2,893 - 2,897 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The noise-riding discharging/charging voltage (DCV) of the Li-Ion battery pack may result in erroneous equivalent circuit model (ECM)-based state-of-charge (SOC) estimation and state-of-health (SOH) prediction of the Li-Ion battery pack. Namely, the noisy DCV is intimately linked with a low battery management system (BMS) performance. Therefore, additional technique should be absolutely required for noise reduction of the DCV. This work presented an implementation of the discrete wavelet transform (DWT)-based denoising technique that enables us to provide the de-noised DCV. Specifically, this work develops prior investigation one step further by performing a comparative analysis of the DWT-based denoising technique that uses different thresholding methods such as hard- and soft-thresholding. With regard to the denoising technique using hard-thresholding that retains a small number of coefficients, it is inevitable that the results are often smoothed at the expense of loosing information of the DCV. On the other hand, it is possible to acquire an improved noise-reduction of the DCV through the denoising technique using soft-thresholding retaining a large number of coefficients. Finally, selection of the proper thresholding method is a significant task in determining the signal-to-noise ratio (SNR), and analytic results indicate the clear comparison by showing the SNR difference between two denoising techniques considering hard- and soft-thresholding. For reference, threshold value has been calculated by VisuShrink method.

목차

Abstract
I. INTRODUCTION
II. REVIEW OF THE DISCRETE WAVELET TRANSFORM
III. COMPARISON OF THE DENOISING PERFORMANCE
IV. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0