메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박태희 (동명대학교) 한종구 (부산대학교) 엄일규 (부산대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제52권 8호
발행연도
2015.8
수록면
97 - 105 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
내용 적응적 스테가노그래피는 복잡한 텍스쳐 또는 잡음 영역과 같이 통계적 모델로는 기술하기 어려운 영역에 비밀 메시지를 은닉한다. 이러한 메시지를 검출하기 위해서는 인접 화소간의 국부적인 의존성을 정교하게 모델링해야 하기 때문에 종종 고차원의 특징벡터 추출이 필요하다. 이러한 스테그분석 방법은 계산량이 많을 뿐만 아니라 비밀 메시지의 검출 정확도가 은닉 영역과 사용된 왜곡 척도에 의존한다는 문제점을 가진다. 본 논문에서는 적은 수의 특징 벡터를 이용하여 비밀 메시지의 검출율을 높일 수 있는 개선된 내용 적응적 스테가노그래피의 스테그분석 방법을 제안하고자 한다. 먼저 이산 코사인 변환 계수의 차이를 이용한 특징이 내용 적응적 스테가노그래피의 분석에 유용함을 보이고, 이에 대한 1차 마코프 확률을 특징으로 사용하는 방법을 제시한다. 추출된 특징 벡터는 앙상블 분류기로 입력되어 커버 영상과 스테고 영상을 분류하기 위해 학습된다. 실험 결과 내용 기반 적응적 스테고 영상들에 대해 적은 수의 특징 벡터를 사용함에도 불구하고 기존의 방법에 비해 검출율과 정확도가 우수함을 확인할 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 내용 적응적 스테가노그래피 및 스테그분석
Ⅲ. 제안 방법
Ⅳ. 실험 및 결과
Ⅳ. 결론
REFERENCES

참고문헌 (22)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0