메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shinsook Lee (Korea University) Dong-Jin Shin (Hankuk University of Foreign Studies)
저널정보
한국음운론학회 음성음운형태론연구 음성음운형태론연구 제21집 제2호
발행연도
2015.8
수록면
297 - 321 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper explores whether Korean EFL listeners" perception of English vowels and their English vowel category development can be estimated from cross-language labelling between English and Korean. The paper also investigates whether cross-language labelling makes different predictions for General American English (GAE) vowels and British English (Received Pronunciation, RP) vowels, given that vowel category variation exists between the two accents. Thirty-six university students in Seoul completed cross-language labelling and English vowel identification. Fit indices were calculated based on cross-language labelling for both GAE and RP vowels in order to answer the questions posed. Specifically, the paper tested the assumption of the Speech Learning Model (SLM) that L2 category development is closely related to the perceived phonetic distance between L1 and L2 sounds by calculating fit indices. The results reveal that the fit indices computed had limitations in accounting for the identification accuracy of L2 vowels. The fit indices also made similar predictions for GAE and RP vowels, but there were accent and vowel category variations between GAE and RP. Thus, the overall results suggest that L2 vowel perception or L2 vowel category learning depends on factors such as L2 learners’ target language accent and their overall interlanguage phonological system, as well as the perceived phonetic distance between an L2 sound and its closest L1 counterpart.

목차

1. Introduction
2. Previous studies on cross-language category labelling
3. Experiment
4. Results and discussion
5. General discussion and implications
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0