메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제17권 제5호
발행연도
2012.5
수록면
33 - 40 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 HTTP Outbound Traffic의 감시를 통해 다양한 웹 공격의 침입 경로에 대응하고, 학습 효율성을 높여 변종 또는 새로운 기법을 이용한 비정상 행위에 대한 오탐을 낮춘 기법을 제안한다. 제안 기법은 HMM(Hidden Markov Model)을 적용하여 HTML 문서속의 태그와 자바스크립트의 학습을 통한 정상 행위 모델을 생성한 후, HTTP Outbound Traffic속의 정보를 정상 행위 모델과 비교하여 웹 공격을 탐지한다. 실제 침입된 환경에서의 검증 분석을 통해, 제안기법이 웹 공격에 대해 0.0001%의 오탐율과 96%의 우수한 탐지능력을 보임을 제시한다.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0