메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제17권 제9호
발행연도
2012.9
수록면
17 - 27 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
여러 오픈마켓에서 판매자가 동일한 상품을 등록할 시에 각 오픈마켓마다 다른 기준으로 제공되는 카테고리로 인하여 카테고리 선정에 어려움이 발생한다. 본 논문에서는 판매자가 오픈마켓에서 상품 등록 시 다른 오픈마켓에서 기 판매하고 있는 상품의 카테고리와 의미적으로 가장 연관성이 높은 카테고리를 추천하는 방법을 제안한다. 이때 입력받은 카테고리를 의미 분석하는 방법으로 형태소 분석, Wiki 낱말사전, WordNet, Google 번역 서비스를 사용하여 추출된 색인어로 카테고리를 검색한 후, 의미적 연관성 측정을 통하여 가장 의미가 비슷한 카테고리를 추천하는 방법이다. 실험 결과로 색인어 기반의 검색방법 보다 제안하는 의미분석 검색방법이 정확한 검색결과를 보여주어 시스템의 신뢰도를 향상시켰으며, 카테고리를 선택하는데 드는 시간비용을 절감해주는 것을 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0