메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제17권 제12호
발행연도
2012.12
수록면
179 - 185 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 RST(Rough Set Theory)과 SVM(Support Vector Machine) 알고리즘을 이용한 RSIDS (RST and SVM based Intrusion Detection System)를 설계하였다. RSIDS는 PrePro(Preprocessing) 모듈, RRG(RST based Rule Generation) 모듈, 그리고 SAD(SVM based Attack Detection) 모듈로 구성된다. PrePro 모듈은 수집한 정보를 RSIDS의 데이터 형식에 맞게 변경한다. RRG 모듈은 공격 자료를 분석하여 공격 규칙을 생성하고, 그 규칙을 이용하여 대량화된 데이터에서 공격정보를 추출하고, 그리고 추출한 공격정보를 SAD 모듈에 전달한다. SAD 모듈은 추출된 공격 정보를 이용하여 공격을 탐지하여 관리자에게 통보한다. 그 결과, 기존의 SVM과 비교해볼 때, RSIDS는 평균 공격 탐지율 77.71%에서 85.28%로 향상되었으며, 평균 FPR은 13.25%에서 9.87%로 감소하였다. 따라서 RSIDS는 기존의 SVM을 이용한 공격 탐지 기법보다 향상되었다고 할 수 있다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0