메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회 학술발표논문집 한국컴퓨터정보학회 동계학술대회 논문집 제19권 제1호
발행연도
2011.1
수록면
249 - 252 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 쇼크(shock) 그래프 기반의 뼈대 특징을 이용하여 모양 정보를 분류하기 위해 그래프 편집 거리(edit cost) 기반의 k-means 군집화 알고리즘을 적용하는 방법을 제안한다. 본 논문에서 제안된 방법에서는 먼저 질의 영상과 대상 데이터베이스 영상으로부터 뼈대 기반의 쇼크 그래프를 추출한 후 종점(end points)과 분기점(branch points)을 가중치를 이용하여 적응적으로 선택한다. 그런 다음, 두 영상 사이의 편집 거리를 구하여 이를 k-means 군집화 알고리즘의 거리 척도로 적용함으로써 대용량의 영상을 보다 효과적으로 분류한다. 성능을 평가하기 위해서 제안된 알고리즘을 MPEG-7 데이터베이스에 적용하였으며, 그 결과 제안된 영상 분류 방법이 기존의 영상 분류 방법에 비해서 보다 효과적으로 모양 기반의 영상을 분류하였음을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0