메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yukihiro Sugiki (Kumamoto University) Teruo Yamaguchi (Kumamoto University) Hiroshi Harada (Kumamoto University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2015
발행연도
2015.10
수록면
347 - 350 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Optical flow estimation is one of the measuring method of object motion. It is important to prove that optical flow measurement system can perform in small scale computer to use as visual sensor. In this research, processing speed of optical flow measurement system with a single board computer Raspberry Pi was evaluated. Calclation time of optical flow estimation program based on spatio-temporal differentiation method with eigenvalue decomposition was compared with those using built-in optical flow function in OpenCV library (Lucas-Kanade method and Horn-Schunck method). As a result, the program was about the same processing speed as HS method, and took about six times as long as LK method. It is also shown when an object moves at a velocity of about 10 pixels per frame or more, output results apt to show wrong velocity vectors. Processing speed is to be improved by selecting optimum pixels required for velocity estimation. It will be necessary to compensate for velocity so that it is able to estimate optical flow at a high speed.

목차

Abstract
1. INTRODUCTION
2. THEORY AND DEVICES
3. EXPERIMENTS AND RESULTS
4. CONCLUDING REMARKS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-001911158