메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ju Tang (Chongqing University) Ran Zhuo (Chongqing University) DiBo Wang (Chongqing University) JianRong Wu (Chongqing University) XiaoXing Zhang (Chongqing University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.11 No.1
발행연도
2016.1
수록면
192 - 199 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
With changes in insulated defects, the environment, and so on, new partial discharge (PD) data are highly different from the original samples. It leads to a decrease in on-line recognition rate. The UHF signal and pulse current signal of four kinds of typical artificial defect models in gas insulated switchgear (GIS) are obtained simultaneously by experiment. The relationship map of ultrahigh frequency (UHF) cumulative energy and its corresponding apparent discharge of four kinds of typical artificial defect models are plotted. UHF cumulative energy and its corresponding apparent discharge are used as inputs. The support vector machine (SVM) incremental method is constructed. Examples show that the PD SVM incremental method based on simulated annealing (SA) effectively speeds up the data update rate and improves the adaptability of the classifier compared with the original method, in that the total sample is constituted by the old and new data. The PD SVM incremental method is a better pattern recognition technology for PD on-line monitoring.

목차

Abstract
1. Introduction
2. PD Experiment
3. Characteristic Quantities
4. Support Vector Machine
5. PD SVM Incremental Recognition Method
6. Instance Simulation
5. Conclusion
References

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-002304125