메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
마상용 (인하대학교) 심현민 (인하대학교) 이상민 (인하대학교)
저널정보
한국재활복지공학회 재활복지공학회논문지 재활복지공학회논문지 제9권 제4호
발행연도
2015.11
수록면
285 - 291 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 IMU(inertial measurement unit)의 데이터를 이용하여 사람의 앉은 자세를 분류하는 알고리즘을 제안한다. 제안하는 알고리즘은 IMU의 데이터를 주성분 분석법(principle component analysis: PCA)을 이용하여 특징 벡터를 3개로 축소시켰고, RBF(radial basis function) 커널을 적용한 서포트 벡터 머신(support vector machine: SVM)을 이용하여 자세를 분류하였다. 데이터의 측정을 위하여 건강한 성인 3명을 대상으로 실험을 실시하였고, 데이터의 수집을 위하여 넥밴드 형태의 이어폰에 IMU를 내장한 장치를 개발하여 착용하였다. 피험자는 각각 neutral position, smartphoning, writing의 세 가지 앉은 자세에 대하여 실험을 진행하였다. 실험 결과 제안하는 PCA-SVM 알고리즘은 특징 벡터의 차원을 25%로 축소시키면서도 95%의 신뢰를 보였다.

목차

요약
ABSTRACT
1. 서론
2. 제안하는 알고리즘
3. 실험 방법
4. 결론 및 고찰
참고문헌

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-512-002207647