메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 두 가지 속성 삭제 방법인 ReliefF와 SVM-REF를 조합하여 유전자 선택을 위한 속성 삭제에 기반을 둔 최적화된 분류법(OCFE)을 제안한다. ReliefF 알고리즘은 데이터의 중요도에 따라 데이터 순위를 매기고 필터(filter) 속성 선택 알고리즘이다. SVM-RFE 알고리즘은 속성의 가중치 기반으로 데이터 순위를 매기고 데이터를 감싸는 래퍼(wrapper) 속성 선택 알고리즘이다. 이러한 두 가지 기법을 조합함으로써, 우리는 SVM-RFE는 0.3096779이고 OCFE는 0.3016138으로 에러율 평균이 좀 더 낮게 나타났다. 또한, 제안된 기법은 SVM-RFE가 69%이고 OCFE는 70%으로 좀 더 정확한 것으로 나타났다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002530033