메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Furqan Asghar (Kunsan National University) Muhammad Talha (Kunsan National University) Se-Yoon Kim (Kunsan National University) SungHo Kim (Kunsan National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제22권 제4호
발행연도
2016.4
수록면
276 - 280 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Due to the increasing interest in safety and consistent product quality over a past few decades, demand for effective quality monitoring and safe operation in the modern industry has propelled research into statistical based fault detection and diagnosis methods. This paper describes the application of Hotelling T<SUP>2</SUP> index based Principal Component Analysis (PCA) method for fault detection and diagnosis in industrial processes. Multivariate statistical process control techniques are now widely used for performance monitoring and fault detection. Conventional methods such as PCA are suitable only for steady state processes. These conventional projection methods causes false alarms or missing data for the systems with transient values of processes. These issues significantly compromise the reliability of the monitoring systems. In this paper, a reliable method is used to overcome false alarms occur due to varying process conditions and missing data problems in transient states. This monitoring method is implemented and validated experimentally along with matlab. Experimental results proved the credibility of this fault detection method for both the steady state and transient operations.

목차

Abstract
I. INTRODUCTION
II. PRINCIPAL COMPONENT ANALYSIS
III. EXPERIMENTAL STUDIES
IV. CONCLUSION
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-569-002732262