메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최원기 (BEL Technology 친환경외피공학연구소) 오민석 (단국대학교) 신우철 (대전대학교)
저널정보
한국태양에너지학회 한국태양에너지학회 논문집 한국태양에너지학회 논문집 제36권 제2호
발행연도
2016.4
수록면
19 - 29 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Whilst there are growing interests in pursuing energy efficiency and zero-energy buildings in built environment, it is widely recognised that Building-Integrated Photovoltaic (BIPV) is one of the most promising and required technologies to achieve these goals in recent years. Although BIPV is a broadly utilized technique in variety of fields in built environments, it is required that generation of BIVP should be analysed and calculated by external specialists. The aim of this research is to focus on developing a new diagram for prediction of the pre-estimation model in early design stage to harness solar radiation data, PV types, slopes, azimuth and so forth. The results of this study show as follows: 1) We analysed 162 districts in a national level and the examined areas were categorised into five zones. The standard deviation of the results was 2.9 per cent; 2) The increased value of solar radiation on a vertical plane in five categorised zones was 42㎾h/㎥, and the result was similar to the average value of 43.8㎾h/㎥; and 3) The pre-estimation of diagram was developed based on the categorisation of zones and azimuth as well as the results of the developed diagram showed little difference compared to the previously utilised method. The suggested diagram in this paper will contribute to estimate BIPV without any external contribution to calculate the value. Even though the result of this study shows little difference, it is required to investigate a number of different variables such as BIPV types, modules, slope angle and so forth in order to develop an integrated pre-estimation diagram.

목차

Abstract
1. 서론
2. 연구 방법 및 범위
3. 발전량 분석 방법론
4. 약식 예측 기법의 활용법
5. 결론
Reference

참고문헌 (3)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-563-002890836