메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오명석 (한국과학기술원) 김기범 (한국과학기술원) 박현철 (한국과학기술원)
저널정보
한국전자파학회 한국전자파학회논문지 韓國電磁波學會論文誌 第27卷 第5號(通卷 第228號)
발행연도
2016.5
수록면
407 - 415 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
무선 통신의 최근 동향을 살펴보면 에너지 효율적 전송의 중요성이 강조되고 있다. 본 논문은 multiple-input multipleoutput orthogonal frequency division multiplexing(MIMO-OFDM) 무선 시스템에서 에너지 효율성을 최대화하기 위해 기계학습 기술을 사용하는 적응형 전송을 고려한다. MIMO-OFDM 시스템의 채널 상태를 효과적으로 나타내기 위한 two- dimensional capacity(2D-CAP) feature space와 classification 기술을 통해 에너지 효율적인 적응형 전송을 수행하는 machinelearning-based bit and power adaptation(ML-BPA) 알고리즘을 제안한다. 모의 실험 결과를 통해 2D-CAP이 본 논문이 고려하는 무선 채널 상태를 정확하게 나타내며, 이를 통해 적응형 전송의 성능을 향상시킴을 확인하였다. 또한, ordered postprocessing signal-to-noise ratio(ordSNR)를 포함한 다른 feature space들과 직접적인 비교를 통해 2D-CAP이 전송 성능이나 복잡도 측면에서 뚜렷한 이득을 가짐을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 시스템 모델
Ⅲ. 문제 형성
Ⅳ. 기계 학습 기반 적응형 전송 기술
Ⅴ. 모의 실험 결과
Ⅵ. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-427-000682159