메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이충연 (서울대학교) 곽동현 (서울대학교) 이범진 (서울대학교) 장병탁 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.43 No.7
발행연도
2016.7
수록면
781 - 785 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
실제 환경에서 사람의 일상적인 활동을 학습하는 기술은 스마트 비서나 자율지능 로봇과 같은 인지 지능 시스템 개발을 위해 필요한 핵심 기술이다. 일상을 예측하는 대다수의 연구들은 센서 데이터의 패턴과 일상 활동 사이의 직접적인 상관관계를 탐색하는 것에 집중하였다. 하지만 일상에서의 인간 활동은 하나의 레이블로 표현하기 어려운 다수의 사건 집합이고 또한 서술 가능한 특성을 지니고 있다. 본고에서는 일상을 구성하는 사건 요소들을 우선 인식하고, 이후 일상 활동을 학습 및 예측하는 방법을 제안한다. 제안하는 방법은 개인의 일상에서 웨어러블 장치와 스마트폰으로부터 수집된 일인칭 시점의 멀티 센서 데이터로부터 위치 좌표, 장면 영상, 그리고 신체적 움직임에 기인한 사건 요소들을 각각 인식한 뒤, 이 정보들이 특정 활동 내역에 따라 조합되는 규칙을 학습하여 최종적으로 사용자의 일상 활동을 예측한다. 두명의 실험 참가자가 각각 2주간 수집한 센서 데이터를 이용하여 실험한 결과는 제안한 방법이 센서 데이터로부터 추출된 특징을 일차적으로 사용하여 분류하는 기존의 방법과 비교하여 향상된 성능을 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 연구 내용 및 방법
4. 실험 결과
5. 논의 및 결론
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0