메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Junghyun Lee (Gwangju Institute of Science and Technology (GIST)) Sujin Choi (Korea Aerospace Research Institute (KARI)) Kwanghee Ko (Gwangju Institute of Science and Technology (GIST))
저널정보
한국항공우주학회 International Journal of Aeronautical and Space Sciences International Journal of Aeronautical and Space Sciences Volume.17 Number.2
발행연도
2016.6
수록면
240 - 252 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, an on-board orbit propagator and compressing trajectory method based on B-spline for a lunar explorer are proposed. An explorer should recognize its own orbit for a successful mission operation. Generally, orbit determination is periodically performed at the ground station, and the computed orbit information is subsequently uploaded to the explorer, which would generate a heavy workload for the ground station and the explorer. A high-performance computer at the ground station is employed to determine the orbit required for the explorer in the parking orbit of Earth. The method not only reduces the workload of the ground station and the explorer, but also increases the orbital prediction accuracy. Then, the data was compressed into coefficients within a given tolerance using B-spline. The compressed data is then transmitted to the explorer efficiently. The data compression is maximized using the proposed methods. The methods are compared with a fifth order polynomial regression method. The results show that the proposed method has the potential for expansion to various deep space probes.

목차

Abstract
1. Introduction
2. Transfer Orbit of the Lunar Explorer
3. Deep Space Communication and Constraints
4. Data Compression Based on Power and B-spline
5. Proposed Procedure
6. Application Within a Lunar Explorer
7. Algorithm Application and Results
8. Conclusions
References

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-558-000818300