메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Shibudas Kattakkalil Subhashdas (Kyungpook National University) Ji-Hoon Yoo (Kyungpook National University) Yeong-Ho Ha (Kyungpook National University)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제53권 제6호 (통권 제463호)
발행연도
2016.6
수록면
110 - 121 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
색 항상성 알고리즘의 주된 목적은 광원의 색도를 추정하는 것으로, 최근 통계 기반과 학습 기반 및 통계와 학습의 조합 기반의 색 항상성 알고리즘들이 다양하게 연구되고 있다. 통계 기반 알고리즘은 특정 가정을 만족하는 영상들에 대해서만 수행이 가능하고, 학습 기반 알고리즘은 정확한 전처리와 학습 데이터가 요구되는 복잡한 방법이다. 그리고 통계와 학습의 조합 기반 알고리즘은 사전에 결정되거나 동적으로 변하는 가중치에 따라 결과가 의존적이기 때문에, 이를 정의하기 어려울 뿐만 아니라 에러에도 민감하다. 따라서 본 논문은 복잡한 전처리를 요구하지 않으며, 다양한 환경 조건 하에서 광원 추정이 가능한 새로운 최적화 방법을 제안한다. 영상 내에서 광원의 영향이 강하게 미치는 부분은 한 채널의 표준 편차가 나머지 두 채널에 비해 큰 차이를 가진다. 이 가정을 기반으로, 광원 정도(DIT, degree of illumiinant tinge)라고 불리는 비용 함수는 광원이 보정된 영상의 질을 결정하기 위해 제안된다. 표준 광원(d65) 하의 영상이 다른 광원 하의 영상에 비해 더 작은 DIT 값을 가진다. 본 논문에서 군집단 최적화(PSO, particle swarm optimization) 기반의 집단지성(swarm intelligence)은 DIT를 최소화하기 위해, 주어진 영상의 최적 광원을 찾는데 사용된다. 제안한 방법은 실세계 데이터셋을 통해 평가하였고, 실험 결과는 제안된 방법의 효율성을 입증하였다.

목차

요약
Abstract
Ⅰ. Introduction
Ⅱ. Proposed approach
Ⅲ. Experimental Evaluation
Ⅳ. Conclusion and future work
REFERENCES

참고문헌 (27)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-569-001067222