메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이병수 지승열 (한양대학교) 전한종 (한양대학교)
저널정보
(사)한국CDE학회 한국CDE학회 논문집 한국CDE학회 논문집 제21권 제3호
발행연도
2016.9
수록면
252 - 266 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
An architectural pre-design, which is conducted prior to the architecture design, supports fundamental configuration during the entire AEC project by predicting the cost, demand, etc., of the building, and is therefore gaining importance. In particular, the massing calculation of the predesign phase should be prioritized, as it is fundamental to architectural outline. However, most architects depend on only their experience and intuition while conceptualizing an integrated framework of design conditions, including the building code and requirements for the massing calculation of the object. Therefore, many difficulties arise in terms of performing appropriate tasks. Thus, the purpose of this study is to implement a knowledge-based BIM for explicitly representing the design knowledge, which is the basis of decision making for an architect while performing the massing calculation. In particular, the 3D knowledge relevant to a project can be provided and accumulated in the massing calculation by the BIM system; this facilitates an integral understanding. Consequently, the approximate result of massing calculation in 3D BIM environment, through both the knowledge-based BIM template and plug-in, can be swiftly provided to the architect. In addition, the architect can invent various alternatives, estimate resulting costs, and reuse the accumulated knowledge in future BIM design processes.

목차

ABSTRACT
1. 서론
2. 선행연구 고찰
3. 설계지식 재현과 지식베이스 구축
4. 매스 규모산정 지식기반 BIM 시스템
5. 결론
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-530-001098413