메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김연규 (부산대학교) 차의영 (부산대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제20권 제9호
발행연도
2016.9
수록면
1,657 - 1,665 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
CNN(Convolutional Neural Network)을 사용한 심화 학습이 다양한 분야에서 진행되고 있으며 관련 연구들은 이미지 인식의 많은 분야에서 높은 성능을 보이고 있다. 본 논문에서는 한글 인식을 위해 대규모 한글 데이터베이스를 학습할 수 있는 CNN 구조의 간소화된 GoogLeNet을 사용한다. 본 논문에 사용된 데이터베이스는 대규모 한글 데이터베이스인 PHD08로 총 2,350개의 한글 문자에 대해 각 2,187개의 샘플을 가져 총 5,139,450개의 데이터로 구성되어 있다. 간소화된 GoogLeNet은 학습의 결과로 학습 종료 시점에서 PHD08에 대해 99% 이상의 Top-1 테스트 정확도를 보였으며 실험의 객관성을 높이기 위해 PHD08에 존재하지 않는 한글 폰트로 이루어진 한글 데이터를 제작하여 상용 OCR 프로그램들과 분류 성능을 비교하였다. 상용 OCR 프로그램들은 66.95%에서 83.17%의 분류 성공률을 보인 반면, 제안하는 간소화된 GoogLeNet은 평균 89.14%의 분류 성공률을 보여 상용 OCR 프로그램들보다 높은 분류 성공률을 보였다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 한글 인식을 위한 CNN 구조 설계
Ⅳ. 실험결과
Ⅴ. 결론
REFERENCES

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001092934