메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김종도 (중원대학교) 김광희 (부경대학교) 윤문철 (부경대학교)
저널정보
한국기계가공학회 한국기계가공학회지 한국기계가공학회지 제15권 제5호
발행연도
2016.10
수록면
39 - 47 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Nowadays, several welding processes are generally used to join parts together, and the materials are generally steel, aluminum, copper, stainless steel, and other difficult-to-weld materials. If a proper welding process is chosen, it is helpful for welding parts. However, there is no desirable technique for appropriately deciding on the welding process in the industry. Therefore, an appropriate method of selecting a welding process is needed for the novice worker in the industry. In this sense, a new analytic network process (ANP) technique is used for effective decision making in welding. By considering several criteria in ANP, a selection method is suggested to decide on the proper welding process. In the study, several criteria were considered for the proper welding of parts. By considering a matrix of prior interdependence effects among various welding processes, a decision-making method based on an ANP is accomplished using a weighting matrix, which is supposed to select an appropriate welding process. In addition, for appropriate decision criteria of the welding process, several factors, such as material, shape, precision, economics, and equipment, are used to accomplish the ANP algorithm. Moreover, the final weighting matrix is calculated following its ANP strategy. Furthermore, this decision-making technique is applied to both stainless razor spot joining and thick steel pipe joining. The results show its reliability and practicality, and the novice engineer and manager can use this technique to determine the best welding process.

목차

ABSTRACT
1. 서론
2. 분석 네트워크 프로세스
3. ANP법의 용접가공에 적용과 분석
4. 결론
REFERENCES

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-581-001584220