메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
임재윤 (Daeduk College) 이대종 (Korea National University of Transportation) 지평식 (Korea National University of Transportation)
저널정보
대한전기학회 전기학회논문지 P 전기학회논문지 제65P권 제4호
발행연도
2016.12
수록면
280 - 284 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Stability and reliability of a power system in many respects depend on the condition of power transformers. Essential devices as power transformers are in a transmission and distribution system. Being one of the most expensive and important elements, a power transformer is a highly essential element, whose failures and damage may cause the outage of a power system. To detect the power transformer faults, dissolved gas analysis (DGA) is a widely-used method because of its high sensitivity to small amount of electrical faults. Among the various diagnosis methods, Rogers diagonsis method has been widely used in transformer in service. But this method cannot offer accurate diagnosis for all the faults. This paper proposes a fault diagnosis method of oil-filled power transformers using PNN(Probability Neural Network) based Rogers diagnosis method. The test result show better performance than conventional Rogers diagnosis method.

목차

Abstract
1. 서론
2. 온도에 따른 가스 특성 및 Rogers 진단 기준
3. PNN 기반 Rogers 진단기법을 이용한 유입변압기의 고장분류 알고리즘
4. 실험 결과
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-560-001890628