메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jun-Ho Huh (Catholic University of Pusan) Kyungryong Seo (Pukyong National University)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제19권 제12호
발행연도
2016.12
수록면
1,970 - 1,980 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The problem of food deficiency is a major discouragement to many low-income developing countries. Most of these countries experience constant danger of hunger, malnutrition and diseases as they are unable to maintain their food supplies mainly due to lack of arable lands and modern crop, livestock and fishery production technologies. In addition, the pollutants resulting from the secondary industries are becoming another serious issue in their food problems. The pollutants mixed in the sands blowing from the mainland China and the toxic waters flowing in the farm land form the industrialized zones are some of the examples. The Vertical Farm, or Plant Factory, proposed in this study could be the best alternative food production system for them. Vertical farm is an efficient food production system that yields relatively a large volume of food materials without environmental risks. The system does not require a large open space and manpower and can minimize the possibility of infiltration of pollutants. This research describes a basic model of the system focusing on determining the optimal sites for it based on the meteorological data concentrating on the atmospheric pollutants. The types and volume of pollutants are analyzed and identified through the big data obtained, followed by visualization of analysis results and their comparisons for better understanding.

목차

ABSTRACT
1. INTRODUCTION
2. RELATED STUDIES
3. BASIC BIG DATA ANALYSIS METHOD FOR SELECTION OF SUITABLE VERTICAL FARM SITES
4. CONCLUSION AND FUTURE WORKS
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-001994848