메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hyo-young Lim (Ministry of National Defense) Wan-ju Kim (Ajou University) Hong-jun Noh (LIG넥스원) Jae-sung Lim (Ajou University)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제42권 제1호
발행연도
2017.1
수록면
193 - 204 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
인터넷 시스템의 보안은 백신을 최신으로 업데이트하고, 신종 악성코드를 탐지해 내는 능력에 달려있다. 하지만, 급변하는 인터넷 환경과 더불어, 악성코드는 끊임없이 변종을 만들어내고 더욱 지능적으로 진화하고 있어 현재 운용중인 시그니쳐 기반 탐지체계로 탐지되지 않는다. 따라서, 본 연구에서는 악성코드의 네트워크 행위 패턴을 추출하여 DNA 서열 유사도를 비교하여 활용하는 유사 시퀀스 정렬 알고리즘을 적용하여 악성코드를 분류하는 기법을 제안한다. 제안한 기법을 실제 네트워크에서 수집된 악성코드 샘플 766개에 적용하여 유사도를 비교한 결과 40.4%의 정확도를 얻었다. 이는 코드나 다른 특성을 배제하고 악성코드의 네트워크 행위만으로 분류했다는 점을 미루어 볼 때 앞으로 더 발전 가능성이 있을 것으로 기대된다. 또한 이를 통해 공격그룹을 예측하거나 추가적인 공격을 예방할 수 있다.

목차

요약
ABSTRACT
Ⅰ. Introduction
Ⅱ. Malware Classification
Ⅲ. Malware Classification Based on Network Pattern Using Sequence Alignment
Ⅳ. Experiments and Results
Ⅴ. Conclusion
References

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-567-002202336