메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조선영 (국방과학연구소) 신영숙 (국방과학연구소)
저널정보
한국방송·미디어공학회 방송과 미디어 방송과 미디어 제22권 제1호
발행연도
2017.1
수록면
96 - 110 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
새로운 영상 미디어 서비스 기술의 발전으로 인해 다양한 영상 인식 기술이 요구되고 있으며, 특히 영상으로부터 특정 객체를 검출하는 기술은 객체와 관련된 광고나 서비스 등의 다양한 활용 분야를 창출하는 핵심 기술이다. 객체 검출 기술이 방송미디어 기술에 적극적으로 활용되기 위해서는 빠르면서도 정확한 성능을 가진 알고리즘 개발이 필수적이다. 본 논문에서는 전통적인 객체 검출 방법들에 비해 우수한 성능을 가지는 Deep Convolutional Neural Networks 기반 객체 검출 방법들을 분석한다. 최근에 소개된 주요 객체 검출 방법들의 연구 배경과 발전 동향을 소개하고, 각 방법의 핵심 알고리즘 및 장단점에 대해 분석한다. 또한 객체 검출의 성능을 평가하기 위해 사용되는 대표적인 데이터셋을 소개하고, 다양한 네트워크 구조/크기 및 학습 데이터 등의 관점에서 각 방법들의 성능을 비교한다. 마지막으로 기존의 객체 검출 방법들을 분석한 내용을 바탕으로 향후 객체 검출 방법들의 발전 방향 및 활용 가능성을 예측해보고자 한다.

목차

Abstract
Ⅰ. 서론
Ⅱ. 객체 검출 방법 및 각 단계 분석
Ⅲ. CNN 기반 객체 검출 연구의 현황
Ⅳ. 객체 검출 알고리즘들의 성능 비교
Ⅴ. 향후 객체 검출 연구의 발전 방향 및 활용가능성 전망
Ⅵ. 결론
참고문헌

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-567-002180599