메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국HCI학회 한국HCI학회 학술대회 PROCEEDINGS OF HCI KOREA 2017 학술대회 발표 논문집
발행연도
2017.2
수록면
1,004 - 1,008 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims to investigate relations between the emoticons and emotions using the ‘kakaotalk’ default emoticons. The emoticon distribution map would be made with new axes from PCA and some ‘Kakaotalk’ default emoticons.
Facial expression and gesture cannot be expressed on mobile messenger. This leads to the global use of emoticon which complements the limitation of mobile messenger communication. Therefore, this study will see what emotions are delivered by each emoticons.
8 adjectives are generated and reduced through focus group interview, categorizing, and literature studies to evaluate stimuli, which is emoticons consisted of facial expression and motion. 37 emoticons are selected as the stimuli based on our own criteria such as emoticons that express emotions with a various degree rather than situations. The semantic differential experiment is performed with 12 subjects and monopolar scales of 8 adjectives.
After PCA, the 1<SUP>st</SUP> principal component is defined as positiveness and 2<SUP>nd</SUP> one is unpredictability, which explains the results up to about 80%. Some emotions were orthogonal to one another and there are more various emotions in negative emoticons rather than positive space.
We concluded that the threshold for using positive emoticons is much higher in comparison with that of negative emoticon. There were somewhat empty space at the positive area in the emoticon distribution map, which means less expressed emotion space through emoticons at the positive area. The emoticon designer could focus on that empty space on the map to fascinate messenger’s users.

목차

Abstract
1. Introduction
2. Method
3. Results
4. Conclusion
Reference

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-004-002129474