메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Junghye Lee (POSTECH) Wonji Lee (POSTECH) Hyeseon Lee (POSTECH) Chi-Hyuck Jun (POSTECH)
저널정보
한국경영과학회 한국경영과학회 학술대회논문집 한국경영과학회 2014년 춘계공동학술대회 논문집
발행연도
2014.5
수록면
491 - 497 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The Bayesian network (BN) is a useful method for modeling healthcare issues since a BN can graphically represent causal relationships among variables and provide its probabilistic information,. In this study, we apply a BN method to hypertension occurrence analysis. This study used the National Health Insurance Corporation (NHIC) database from 2002 to 2010 which contains more than 100,000 cases of personal medical examinations in Korea. We investigate the causality for hypertension occurrence by a structure learning step, and then evaluate the performance to predict hypertension occurrence through parameter learning and inference steps. It is shown that the BN outperforms other prediction methods such as logistic regression, naive Bayes and support vector machine in terms of sensitivity. In addition, the BN has advantages in interpreting which variables affect the hypertension occurrence and how they are related to each other.

목차

Abstract
1. Introduction
2. Bayesian Network
3. Benchmark Methods
4. Materials
5. Experiments and results
6. Conclusion
7. Acknowledgement
8. References

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-020-000843213