메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
배지훈 (한국전자통신연구원) 임준호 (한국과학기술원) 유재학 (한국전자통신연구원) 김귀훈 (한국전자통신연구원) 김준모 (한국과학기술원)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제5호 (통권 제474호)
발행연도
2017.5
수록면
35 - 41 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 지식추출(knowledge distillation) 및 지식전달(knowledge transfer)을 위하여 최근에 소개된 선생-학생 프레임워크 기반의 힌트(Hint)-knowledge distillation(KD) 학습기법에 대한 성능을 분석한다. 본 논문에서 고려하는 선생-학생 프레임워크는 현재 최신 딥러닝 모델로 각광받고 있는 딥 residual 네트워크를 이용한다. 따라서, 전 세계적으로 널리 사용되고 있는 오픈 딥러닝 프레임워크인 Caffe를 이용하여 학생모델의 인식 정확도 관점에서 힌트-KD 학습 시 선생모델의 완화상수 기반의 KD 정보 비중에 대한 영향을 살펴본다. 본 논문의 연구결과에 따르면 KD 정보 비중을 단조감소하는 경우보다 초기에 설정된 고정된 값으로 유지하는 것이 학생모델의 인식 정확도가 더 향상된다는 것을 알 수 있었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험 결과
Ⅳ. 결론
REFERENCES

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-000888438