메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이강 강상익 (인하대학교) 권장우 (인하대학교) 이상민 (인하대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제5호 (통권 제474호)
발행연도
2017.5
수록면
85 - 89 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 향상된 연산 능력을 가진 하드웨어와 알고리즘의 혼합을 통하여 음성 향상을 위한 정확한 음성 검출기 구현을 목적으로 하였다. 음성은 음소의 나열로 구성되어있으며 음성 모델을 세우는데 적합한 방법은 이전의 정보를 이용하는 순환 신경망 (recurrent neural network, RNN)을 사용하는 것이다. 실제 존재하는 모든 잡음에 대하여 학습한 모델을 제시하는 것은 사실상 불가능 하므로 이를 극복하고자 음소기반 학습을 진행하였다. 학습의 결과로 세워진 모델을 기반으로 새로운 음성 신호에서 음성을 검출하고 그 결과를 이용하여 음성 향상을 진행하였다. 순환 신경망과 음소기반 학습은 프레임 별 높은 상관성을 가진 음성 신호에서 좋은 성능을 얻을 수 있었으며 음성 검출기의 성능을 검증하기 위하여 라벨 데이터와 음성 검출결과를 비교하고 다양한 잡음 환경에서 객관적 음질 평가를 진행하여 기존의 음성 향상 알고리즘과 비교하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 음성 검출기를 이용한 음성 향상
Ⅲ. 제안된 음소기반 순환 신경망 음성 검출기를 이용하는 음성향상 알고리즘
Ⅳ. 실험 및 결과
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-000888483