메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
모종훈 (퀀트랩) 유재명 (퀀트랩)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.6
발행연도
2017.6
수록면
581 - 586 (6page)
DOI
10.5626/JOK.2017.44.6.581

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
웹 문서를 자동으로 수집하면 대량의 정보를 손쉽게 모을 수 있다. 이러한 정보 수집 과정을 위해 웹 문서에서 메뉴, 광고 등 불필요한 정보를 제거하고 본문을 자동으로 추출할 필요가 있다. 특히 한국어 웹문서는 영어권과 달리 메타데이터가 포함된 경우가 드물고 디자인이 복잡하여 한국어 웹에 맞는 자동 본문 추출 방법이 필요하다. 기존의 본문 추출 방법은 주로 본문 블록의 문자적, 구조적 특성을 활용한다. 시각적 특성을 처리하기 위해서는 렌더링, 이미지 처리 등에 많은 계산이 필요하기 때문이다. 이 논문에서는 HTML에서 태그 위치를 준-시각적 특성으로 활용한 새로운 본문 추출 방법을 제시한다. 태그위치는 텍스트의 길이에 따라 가변적이기 때문에 태그 서열 위치라는 특성을 개발하였고, 이를 경사 부스팅과 함께 이용하면 정확한 본문 추출이 가능함을 보인다. 본 논문의 연구 결과는 텍스트 분석에 필요한 양질의 문서 자료를 다양한 형태의 웹페이지에서 자동으로 수집하는 데에 쓰일 수 있다.

목차

1. 서론
2. 본문 추출을 위한 블록 특성 추출
3. 경사 부스팅
4. 실험
5. 결과
6. 논의 및 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0