메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제23권 제5호
발행연도
2012.10
수록면
949 - 959 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
범주형 목표변수를 잘 예측하기 위한 데이터마이닝 방법 중에서 최근에는 여러 단일 분류자를 결합한 앙상블 기법이 많이 활용되고 있다. 앙상블 기법 가운데 부스팅은 재표본 시 분류하기 어려운 관찰치의 가중치를 높여 분류자가 해당 관찰치에 보다 집중할 수 있도록 함으로써 다른 앙상블 기법에 비해 오차를 효과적으로 감소시키는 방법으로 알려져 있다. 부스팅을 구성하는 분류자를 의사결정나무로 둔 부스팅 트리 모형의 경우 각 트리의 사이즈를 결정해야 하는데, 본 연구에서는 자료 별로 부스팅 트리에 가장 적합한 트리사이즈가 서로 다를수 있다고 가정하고, 주어진 자료에 맞는 트리사이즈를 추정하는 문제에 대해 논의하였다. 우선 트리사이즈가 부스팅 트리의 정확도에 중요한 영향을 미치는가를 파악하기 위하여 28개의 자료를 대상으로 실험을 수행하였으며, 그 결과 트리사이즈를 결정하는 문제가 모형 전체의 성능을 결정하는데 상당한 역할을 한다는 것을 확인할 수 있었다. 또한 그 결과를 바탕으로 최적의 트리사이즈에 영향을 미칠 것으로 판단되는 몇 가지 특성 변수를 정의하고, 해당 변수를 이용하여 부스팅 트리에서의 최적 트리사이즈를 설명하는 모형을 구성해 보았다. 자료 별로 고유한 최적의 트리사이즈는 자료의 특성에 의존적일 가능성도 있으므로 본 연구에서 제안하는 추정방법은 최적 트리사이즈를 결정하기 위한 출발점 또는 가이드라인으로 활용하는 것이 적절할 것이다. 기존에는 부스팅 트리의 사이즈에 대한 값으로 목표변수의 범주의 개수를 활용하였는데, 본 모형에서 제안하는 트리사이즈의 추정치로 부스팅 트리를 구축한 경우 기존방법에 비해 분류정확도를 유의미하게 개선하는 것을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001382618