메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제24권 제6호
발행연도
2013.12
수록면
1,189 - 1,197 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
연관성 규칙 마이닝은 지지도, 신뢰도, 향상도 등의 흥미도 측도를 기반으로 하여 대용량 데이터베이스를 구성하고 있는 항목들 간의 관련성을 찾아내는 기법이다. 이 기법은 기업의 의사결정 문제, 유통업에서의 교차판매, 고객관리 등 현업에서 많이 활용되고는 있으나, 이러한 기본적인 연관성 평가기준만으로는 두 항목 간의 인과관계를 설명할 수 없다. 본 논문에서는 이러한 문제를 해결하기 위해인과적 연관성 규칙을 제안하는 동시에, 고려하는 평가 기준들이 흥미도 측도의 조건을 충족하는지의여부를 점검하였다. 본 논문에서 제안한 인과적 향상도는 세가지 조건 모두를 만족하는 것으로 입증되었다. 인과적 지지도와 인과적 신뢰도는 동시 발생 확률의 값에 따라 단조 증가하는 조건과 각 항목의 주변 확률의 값에 따라 단조 감소하는 조건은 만족하였다. 반면에 두 항목이 독립이면 연관성 평가기준의 값이 1이 되는 조건에 대해서는 기존의 지지도와 신뢰도와 같이 이 조건이 충족되지 않았다. 또한 예제를 통해 기존의 연관성 평가 기준과 인과적 연관성 평가 기준을 비교해 본 결과, 기존의 평가측도인 지지도와 신뢰도를 기준으로 연관성 규칙 생성 여부를 판단했을 때 탈락되는 규칙도 인과적 평가 기준인 인과적 지지도와 인과적 신뢰도를 이용하여 판단하게 되면 연관성 규칙으로 채택할 수 있다는 사실을 발견하였다.

목차

등록된 정보가 없습니다.

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001384081