메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제26권 제6호
발행연도
2015.12
수록면
1,305 - 1,315 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
ROC 곡선을 구성하는 한 개의 스코어 변수로 이루어진 분류모형을 확장하여 선형 스코어의 함수인 리스크 스코어를 고려하고, 선형 스코어의 계수를 추정하기 위한 방법으로 AUC를 최대화하는 방법을 사용한다. 이런 AUC 접근방법으로 구한 스코어의 계수 추정량은 로지스틱모형을 이용한 선형스코어의 모수의 최대가능도 추정량보다 자료가 로지스틱 가정이 맞지 않는 일반적인 상황에서도 좋은 추정 결과를 보인다. 본 연구에서는 다항범주로 분류되어 현실적인 판별 및 예측 상황을 고려하여AUC 접근방법을 확장한 VUS와 HUM 접근방법을 제안한다. 연결함수로는 로짓, complementary log-log와 로짓을 변형한 함수의 세 종류와 그리고 다양한 분류점의 분포인 경우에 대하여도 모의실험을 실시하였다. 본 논문에서는 다항범주 판별결과에 대하여 VUS와 HUM 접근방법도 AUC 접근방법과 유사하게 다양한 연결함수에 대하여 로지스틱모형 추정방법보다 동등하거나 더 나은 모수추정결과를 보이는 것을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (32)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001377135