메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤수식 (KAIST) 이재길 (KAIST)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.44 No.11
발행연도
2017.11
수록면
1,209 - 1,218 (10page)
DOI
10.5626/JOK.2017.44.11.1209

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 스마트 자동차, 스마트폰과 같은 다양한 소스로부터 공간 빅데이터 스트림을 수집하는 것이 매우 용이해졌다. 공간 데이터 스트림은 편중되고 동적으로 변화하는 분포를 지니기 때문에 전체 부하가 분산 클러스터 내의 작업자들에게 효율적으로 분배되지 않을 경우 전체 시스템의 성능이 저하된다. 본 연구에서는 공간 데이터 스트림에 특화된 부하 균형화 알고리즘인 적응적 공간 키 그룹핑(ASKG)을 제안한다. ASKG의 핵심 아이디어는 공간 데이터 스트림의 최근 분포를 학습하고 이를 기반으로 향후 유입되는 데이터 스트림이 각 작업자에게 고르게 분배되도록 하는 새로운 그룹핑 스키마를 제안하는 것이다. 이를 공간 분포의 변화에 맞춰 주기적으로 반복함으로서 적응적으로 부하 불균형을 해결할 수 있다. 실제 데이터셋에 대해 작업자의 수, 입력 속도, 공간 질의 처리 시간을 변화시키며 성능을 평가한 결과, 대안 알고리즘 대비 제안 방법이 부하 불균형, 처리량, 지연 시간에서 높은 개선효과를 보였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 공간 데이터 스트림 분산 처리 시스템
4. 적응적 공간 키 그룹핑 계획 방법
5. 성능 평가
6. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0