메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정세훈 (광양만권) 신창선 (순천대학교) 조용윤 (순천대학교) 박장우 (순천대학교) 박명혜 (한국전력) 김영현 (한국전력) 이승배 (한국전력) 심춘보 (순천대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제20권 제12호
발행연도
2017.12
수록면
1,960 - 1,969 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
There have been ongoing researches to identify and analyze the patterns of electric power IoT data inside sensor nodes to supplement the stable supply of power and the efficiency of energy consumption. This study set out to propose an analysis process for electric power IoT data with the K-means algorithm, which is an unsupervised learning technique rather than a supervised one. There are a couple of problems with the old K-means algorithm, and one of them is the selection of cluster number K in a heuristic or random method. That approach is proper for the age of standardized data. The investigator proposed an analysis process of selecting an automated cluster number K through principal component analysis and the space division of normal distribution and incorporated it into electric power IoT data. The performance evaluation results show that it recorded a higher level of performance than the old algorithm in the cluster classification and analysis of pitches and rolls included in the communication bodies of utility poles.

목차

ABSTRACT
1. 서론
2. 이론
3. 제안하는 분석 시스템 설계
4. 전력 IoT 데이터 분석 시스템 결과
5. 결론
REFERENCE

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001695411