메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정병진 (수원대학교) 오성권 (수원대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제67권 제1호
발행연도
2018.1
수록면
114 - 123 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (7)

초록· 키워드

오류제보하기
This paper concerns a design and learning method of softmax function neural networks based on K-means clustering. The partial discharge data Information is preliminarily processed through simulation using an Epoxy Mica Coupling sensor and an internal Phase Resolved Partial Discharge Analysis algorithm. The obtained information is processed according to the characteristics of the pattern using a Motor Insulation Monitoring System program. At this time, the processed data are total 4 types that void discharge, corona discharge, surface discharge and slot discharge. The partial discharge data with high dimensional input variables are secondarily processed by principal component analysis method and reduced with keeping the characteristics of pattern as low dimensional input variables. And therefore, the pattern classifier processing speed exhibits improved effects. In addition, in the process of extracting the partial discharge data through the MIMS program, the magnitude of amplitude is divided into the maximum value and the average value, and two pattern characteristics are set and compared and analyzed. In the first half of the proposed partial discharge pattern classifier, the input and hidden layers are classified by using the K-means clustering method and the output of the hidden layer is obtained. In the latter part, the cross entropy error function is used for parameter learning between the hidden layer and the output layer. The final output layer is output as a normalized probability value between 0 and 1 using the softmax function. The advantage of using the softmax function is that it allows access and application of multiple class problems and stochastic interpretation. First of all, there is an advantage that one output value affects the remaining output value and its accompanying learning is accelerated. Also, to solve the overfitting problem, L2-normalization is applied. To prove the superiority of the proposed pattern classifier, we compare and analyze the classification rate with conventional radial basis function neural networks.

목차

Abstract
1. 서론
2. 부분방전과 EMC 센서 선행조사
3. K-means 클러스터링 기반 소프트맥스 신경회로망 부분방전 패턴분류의 설계
4. 시뮬레이션 및 결과 고찰
5. 결론
References

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0