메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정진화 (청주대학교) 채영태 (청주대학교)
저널정보
한국건축친환경설비학회 한국건축친환경설비학회 논문집 한국건축친환경설비학회 논문집 제11권 제6호
발행연도
2017.12
수록면
586 - 598 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The optimal machine learning model depends on building types was selected by comparing and analyzing short term load forecasting (STLF) performance of primary school and commercial reference building based on 4 machine learning models such as ANN, SVM, CHAID, and, RF. The research consists of data collection-storage, data analysis, meteorological variables extraction, energy consumption forecasting and analysis on typical primary school and commercial building energy model. TMY (Typical Meteorological Year) of Incheon, Korea was applied and based on weather forecasting data provided by the KMA (Korea Meteorological Agency). In case of building energy consumption data, primary school and medium commercial reference building energy consumption data by on EIA’s Commercial Buildings Energy Consumption Survey (CBECS) were used. Key weather variables were extracted for each machine learning model between the input variables and the output which is building energy consumption in 15 minutes interval. Finally, forecasting of energy consumption on different building types conducted a comparative analysis of the forecasting performance of building energy consumption based on 4 machine learning models using optimal input variables. The results shows ANN model outperforms other models with 5.44% of CV (RMSE) for 7 days school building energy forecasting trained 8 weeks prior data. Whereas, RF model performs better than the others with 10.96% of CV (RMSE). It may be concluded that the priority of variables which have impacts on energy consumption is important and the most suitable model for energy forecasting is different by the building types.

목차

ABSTRACT
서론
관련 연구 동향
데이터 수집-저장-활용
기계학습모델 및 예측성능 지표
건물유형별 기상주요변수 추출
건물유형별 기계학습모델 선정
결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0