메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Syed Ibrahim Hassan (세종대학교) Dang Lien Minh (세종대학교) 임수현 (세종대학교) 민경복 (세종대학교) 남준영 (세종대학교) 문현준 (세종대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제22권 제3호
발행연도
2018.3
수록면
451 - 457 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
연구는 인공지능 분야의 딥러닝 기술을 기반으로 한 하수관 손상의 자동 탐지 분류 시스템을 제안한다. 성능의 최적화를 위하여 DB 획득 시 발생된 조도 및 그림자 변화와 같은 다양한 환경변화에 강인한 시스템을 구현하였다. 제안된 시스템에서는 Convolutional Neural Network(CNN) 기반의 균열 탐지 및 손상 분류 기법을 구현하였다. 최적의 결과를 위하여 256 x 256 픽셀 해상도의 CCTV 영상 9,941개를 이용하여 CNN모델을 적용하여 손상부위에 대한 딥러닝을 수행하였고 그 결과 98.76 %의 인식률을 획득하였다. 기계학습을 통한 딥러닝 모델을 기반으로 다양한 환경의 하수도 DB에서 720 x 480 픽셀 해상도의 646개의 이미지를 추출하여 성능 평가를 수행 하였다. 본 시스템은 다양한 환경에서 구축된 하수관 데이터베이스 에서 손상 유형의 자동 탐지 및 분류에 최적화된 인식률을 제시한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 하수도관의 손상 탐지 및 분류 방법
Ⅳ. 연구 결과
Ⅴ. 결론
References

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001900406