메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Ali Rohan (Kunsan National University) Mohammed Rabah (Kunsan National University) Sung Ho Kim (Kunsan National University)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.18 No.1
발행연도
2018.3
수록면
20 - 28 (9page)
DOI
10.5391/IJFIS.2018.18.1.20

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes an efficient and integrated fault detection and identification system for power converters and permanent magnet synchronous motor in electric vehicles. Switching faults of power converters (single, double and triple switching faults), electrical and mechanical faults of the permanent magnet synchronous motor (bearing fault, stator electrical faults) are considered. Fault detection is done using Clarke transformed (α-β) three-phase current analysis. Features are extracted from the current signals and artificial neural network (ANN) is used for the fault identification. Using motor current signature analysis and by selecting simple and suitable features, the system can detect and distinguish between overall faults of power converters and permanent magnet synchronous motor in an electric vehicle; it requires no complex calculations. The proposed system is designed in MATLAB/Simulink. The system is tested under different fault scenarios and performance is evaluated. The simulation results have proved that the proposed system can detect and identify overall faults of power converters and permanent magnet synchronous motor easily and effectively with no need for complex calculations and techniques.

목차

Abstract
1. Introduction
2. Structure of Fault Detection and Identification System
3. Simulation Studies
4. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-003-001906807