메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
문현철 (한국항공대학교) 양안나 (한국항공대학교) 김재곤 (한국항공대학교)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제23권 제2호
발행연도
2018.3
수록면
246 - 252 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
제스처는 스마트 글라스 등 웨어러블 기기의 NUI(Natural User Interface)로 주목받고 있다. 최근 MPEG에서는 IoT(Internet of Things) 및 웨어러블 환경에서의 효율적인 미디어 소비를 지원하기 위한 IoMT(Internet of Media Things) 표준화를 진행하고 있다. IoMT에서는 손 제스처 검출과 인식이 별도의 기기에서 수행되는 것을 가정하고 이들 모듈간의 인터페이스 규격을 제공하고 있다. 한편, 최근 인식률 개선을 위하여 딥러닝 기반의 손 제스처 인식 기법 또한 활발히 연구되고 있다. 본 논문에서는 IoMT의 유스 케이스 (use case)의 하나인 웨어러블 기기에서의 미디어 소비 등 다양한 응용을 위하여 CNN(Convolutional Neural Network) 기반의 손 제스처 인식 기법을 제시한다. 제시된 기법은 스마트 글래스로 획득한 스테레오 비디오로부터 구한 깊이(depth) 정보와 색 정보를 이용하여 손 윤곽선을 검출하고, 검출된 손 윤곽선 영상을 데이터 셋으로 구성하여 CNN을 학습한 후, 이를 바탕으로 입력 손 윤곽선 영상의 제스처를 인식한다. 실험결과 제안기법은 95%의 손 제스처 인식율를 얻을 수 있음을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 제스처 기반 웨어러블 응용 시나리오
III. 손 제스처 검출 및 CNN 기반 인식
IV. 실험결과
V. 결론
참고문헌 (References)

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-567-001906068