메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Dongyeong Choi (Kwangwoon University) Seong-Won Lee (Kwangwoon University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.2
발행연도
2018.4
수록면
89 - 96 (8page)
DOI
10.5573/IEIESPC.2018.7.2.089

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Accurate disparity estimation is crucial for extracting depth information from stereo vision. However, in low-textured regions where homogeneity of pixel values is strong, the accuracy of disparity estimation is poor. Local disparity estimation methods have low accuracy on the lowtextured regions,. Global methods are more accurate for estimating disparity than local methods. However, they are too time-consuming, making them difficult to use. In this paper, we propose a low-textured region detection method based on energy in a specific frequency range. We use hierarchical frequency analysis of the pixel value variation within a window to improve disparity estimation. We also propose a hybrid stereo-matching method using feature descriptors in detected low-textured regions based on semi-global matching. It shows good disparity estimation accuracy. The scale-invariant feature transform feature descriptor has the best performance in our lowtextured region disparity estimation method, showing over 80% accuracy in low-textured region detection. Its disparity estimation performance improved in proportion to the ratio of low-textured regions, except for some images with large-sized, continuous low-textured regions.

목차

Abstract
1. Introduction
2. Related Work
3. Hybrid Stereo-matching Method
4. Experiment Results
5. Conclusion
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-002044290