메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Wanhyun Cho (Chonnam National University) Myung Hwan Na (Chonnam National University) Sangkyoon Kim (Mokpo National University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.7 No.2
발행연도
2018.4
수록면
132 - 139 (8page)
DOI
10.5573/IEIESPC.2018.7.2.132

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Understanding human action has become a popular issue in artificial intelligence. To address this, we propose combining a Bayesian hidden Markov model (HMM) with a continuous Gaussian-Wishart emission model. First, we define the HMM with the Gaussian-Wishart emission mixture model to express a sequence of continuous observation feature vectors from a human action video. Second, we use an approximated variational Bayesian inference to derive posterior distributions for hidden variables and parameters required to define the proposed model. Third, we derive the approximated predictive distribution for an observation sequence that can be used to represent a new action, and then, we compute a likelihood function that indicates the probability that the new observation sequence belongs to each class using the approximated predictive distribution. Fourth, we classify the new action into a human action category that maximizes the likelihood function value. Finally, to evaluate the performance of the proposed method, we conduct human action classification using a KTH human action dataset. The experimental results show that the recognition rate with our method is in the middle position among various existing methods.

목차

Abstract
1. Introduction
2. Bayesian HMM with Gaussian-Wishart Emission Mixture Model
3. Variational Bayesian Inference
4. Human Action Recognition
5. Conclusion
References

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-002044341