메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박인규 (중부대학교)
저널정보
한국게임학회 한국게임학회 논문지 한국게임학회 논문지 제18권 제1호
발행연도
2018.2
수록면
105 - 113 (9page)
DOI
10.7583/JKGS.2018.18.1.105

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
고객 유형 분석에 쓰이는 다양한 데이터 분석 방법은 고객들을 위한 맞춤형 콘텐츠를 기획하고, 보다 편리한 서비스를 제공하기 위하여 고객들의 유형과 특성을 정확히 파악하는 것이 매우 중요하다. 본 논문에서는 정보의 손실을 줄이기 위한 일환으로 정보 엔트로피를 확장하여 속성의 불확실성을 이용한 k-modes 군집분석 알고리즘을 제안한다. 따라서 속성에 대한 유사도의 측정은 두 가지의 측면에서 고려되어진다. 하나는 각 분할의 중심에 대한 각 속성간의 불확실성을 측정하는 것이고, 다른 하나는 각 속성이 가지는 불확실성에 대한 확률적 분포에 대한 불확실성을 측정하는 것이다. 특히 속성내의 불확실성은 속성의 엔트로피를 확률적 정보로 변환하여 불확실성을 측정하기 때문에 최종적인 불확실성은 비확률적인 척도와 확률적인 척도에서 고려되어 진다. 여러 실험과 척도를 통하여 제안한 알고리즘의 정확도가 최적의 초기치를 기반으로 군집분석을 수행한 결과에 준수함을 보인다.

목차

요약
ABSTRACT
1. 서론
2. 범주형 속성 엔트로피
3. 확장된 엔트로피 k-modes 알고리즘
4. 실험 및 결과고찰
5. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-050-001947316