메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김정훈 (충북대학교) 나스리디노프 아지즈 (충북대학교)
저널정보
한국컴퓨터교육학회 한국컴퓨터교육학회 학술발표대회논문집 한국컴퓨터교육학회 2018년도 동계학술발표논문지 제22권 제1호
발행연도
2018.1
수록면
41 - 44 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
교육데이터마이닝은 다양한 교육 환경에서 생성되는 막대한 양의 데이터를 활용하여 학습자들의 학습 유형, 학습 진도를 분석, 예측하고 교육 성취를 효과적으로 향상시키는 것을 목적으로 한다. 효과적인 교육데이터마이닝 결과를 얻기 위해서는 교육데이터에 대한 정제 과정이 필요하며 DBSCAN 클러스터링을 통해 교육데이터에 포함된 노이즈 데이터를 제거하고 생성된 각 클러스터에서 동일한 비율로 데이터를 추출함으로써 편향되지 않은 표본 데이터를 생성할 수 있다. 하지만 DBSCAN은 두 개의 전역 매개변수에 의해 다양한 밀도분포를 가지는 클러스터를 생성할 수 없다는 문제점이 있으며 이는 교육 데이터를 정제함에 있어 치명적인 문제점이 될 수 있다. 본 논문에서는 DBSCAN의 문제점을 개선하고 클러스터링 정확도를 향상시키기 위해 고정된 매개변수를 사용하지 않고 각 밀도분포에 대해 최적의 입력 매개변수를 결정함으로써 다양한 밀도분포를 가지는 클러스터들을 효과적으로 생성하는 C-DBSCAN을 제안한다.

목차

요약
1. 서론
2. 관련연구
3. C-DBSCAN
4. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-037-001938458