메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
진우정 (서울대학교) 최동진 (서울대학교) 김영진 (서울대학교) 강유 (서울대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.45 No.6
발행연도
2018.6
수록면
564 - 571 (8page)
DOI
10.5626/JOK.2018.45.6.564

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
건물 내 IoT 시스템을 이용한 재실자의 수 및 행동 유형 파악은 스마트 냉/난방 시스템 등에 사용되어 전력 효율을 개선시키고 비용 절감에 도움되는 중요한 문제이다. 실제 건물 관리 시스템에서는 카메라 등의 장비를 이용하여 방 안의 현황을 파악하고 재실자의 수와 행동 유형을 직접 파악하는 방법 등이 사용되고 있다. 이 방법으로 사람 수와 행동 유형을 파악하는 것은 비효율적일뿐만 아니라 데이터를 위한 방대한 저장 공간이 필요하다. 본 연구에서는 적외선 그리드 아이 센서와 소음 센서를 이용하여 실내 센서 데이터를 수집하였다. 또한 이 데이터를 토대로 재실자 수와 행동 유형을 파악하는 딥러닝 모델과 데이터의 시간적 특성을 고려하는 딥러닝 모델을 제안한다. 제안하는 모델은 약 95.3%의 정확도로 사람 수를 파악하고 90.9%의 정확도로 사람 행동 유형을 파악한다. 또한 Truncated SVD를 이용하여 정확도의 손실을 최소화하면서 저장 공간을 줄이는 방법을 제안한다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 제안된 방법
4. 실험
5. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0