메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한보름 (서울대학교) 임유나 (서울대학교) 김혜진 (서울대학교) 손석우 (서울대학교)
저널정보
한국기상학회 대기 대기 Vol.28 No.2
발행연도
2018.6
수록면
153 - 162 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The statistical prediction model for wintertime surface air temperature, that is based on snow cover extent and Arctic sea ice concentration, is updated by considering El-Niño Southern Oscillation (ENSO) and Quasi-Biennial Oscillation (QBO). These additional factors, representing leading modes of interannual variability in the troposphere and stratosphere, enhance the seasonal prediction over the Northern Hemispheric surface air temperature, even though their impacts are dependent on the predicted month and region. In particular, the prediction of Korean surface air temperature in midwinter is substantially improved. In December, ENSO improved about 10% of prediction skill compared without it. In January, ENSO and QBO jointly helped to enhance prediction skill up to 36%. These results suggest that wintertime surface air temperature in Korea can be better predicted by considering not only high-latitude surface conditions (i.e., Eurasian snow cover extent and Arctic sea ice concentration) but also equatorial sea surface temperature and stratospheric circulation.

목차

Abstract
1. 서론
2. 자료 및 방법
3. 결과
4. 요약 및 결론
REFERENCES

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-453-003142650