메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
추한경 (성균관대) 신한솔 (성균관대) 안기언 (성균관대) 라선중 (성균관대) 박철수 (서울대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第34卷 第6號(通卷 第356號)
발행연도
2018.6
수록면
63 - 69 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
The machine learning model can capture the dynamics of building systems with less inputs than the first principle based simulation model. The training data for developing a machine learning model are usually selected in a heuristic manner. In this study, the authors developed a machine learning model which can describe supply air temperature from an AHU in a real office building. For rational reduction of the training data, the progressive sampling method was used. It is found that even though the progressive sampling requires far less training data (n=60) than the offline regular sampling (n=1,799), the MBEs of both models are similar (2.6% vs. 5.4%). In addition, for the update of the machine learning model, the normalized mutual information (NMI) was applied. If the NMI between the simulation output and the measured data is less than 0.2, the model has to be updated. By the use of the NMI, the model can perform better prediction (5.4% → 1.3%).

목차

Abstract
1. 서론
2. 연구 방법
3. 대상 건물
4. 온라인 기계학습 모델 개발
5. 결론
REFERENCES

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-540-003161431