메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Woojin Lee (Seoul National University) Jaewook Lee (Seoul National University) Saerom Park (Seoul National University)
저널정보
대한산업공학회 Industrial Engineering & Management Systems Industrial Engineering & Management Systems Vol.17 No.2
발행연도
2018.6
수록면
334 - 340 (7page)
DOI
10.7232/iems.2018.17.2.334

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Domain adaptation methods aims to improve the accuracy of the target predictive classifier while using the patterns from a related source domain that has large number of labeled data. In this paper, we introduce new kernel weight domain adaptation method based on smoothness assumption of classifier. We propose new simple and intuitive method that can improve the learning of target data by adding distance kernel based cross entropy term in loss function. Distance kernel refers to a matrix which denotes distance of each instances in source and target domain. We efficiently reduced the computational cost by using the stochastic gradient descent method. We evaluated the proposed method by using synthetic data and cross domain sentiment analysis tasks of Amazon reviews in four domains. Our empirical results showed improvements in all 12 domain adaptation experiments.

목차

ABSTRACT
1. INTRODUCTION
2. LITERATURE REVIEW
3. PROPOSED METHOD
4. EXPERIMENT
5. CONCLUSION
REFERENCES

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-530-003116725