메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
권지훈 (한화시스템) 하성재 (한국폴리텍대학) 곽노준 (서울대학교)
저널정보
한국전자파학회 한국전자파학회논문지 韓國電磁波學會論文誌 第29卷 第7號(通卷 第254號)
발행연도
2018.7
수록면
550 - 559 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 딥뉴럴네트워크(deep neural network: DNN)를 이용해 사람 걸음 및 배경잡음원에 의해 발생한 마이크로 도플러 신호를 탐지 및 분류 처리하는 연구를 제안한다. 기존 분류처리 연구는 경험 및 통계적인 방법을 통해 분류기 성능에 직접적으로 영향을 미치는 의미있는 특징을 추출하기 위한 복잡한 과정을 포함한다. 그러나 딥뉴럴네트워크는 다수의 레이어 층을 단계적으로 통과하는 과정을 통해 점진적으로 특징을 재구성 및 생성하므로, 별도의 특징 추출과정을 생략할 수 있으며, 자연스럽게 네트워크상에서 특징을 생성할 수 있는 이점이 있다. 따라서 본 논문에서는 마이크로 도플러 신호 인식을 위한 딥뉴럴네트워크 효과성 입증을 위해, 이진분류기와 다층클래스 분류기를 다층퍼셉트론과 딥뉴럴네트워크를 통해 설계하고 비교분석한다. 실험 결과, 다층퍼셉트론은 이진분류기의 경우 테스트세트에 대한 분류 정확도가 90.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트세트에 대한 분류정확도가 86.1 %로 측정되었다. 딥뉴럴네트워크는 이진분류기의 경우 테스트세트에 대한 분류 정확도가 97.3 %로 측정되었고, 다층클래스 분류기의 경우 테스트 세트에 대한 분류정확도가 96.1 %로 측정되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 딥뉴럴네트워크
Ⅲ. The Micro-Doppler Signals
Ⅳ. Design And Experiment
Ⅴ. 결론
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-427-003354178